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Abstract
A simple model of indirect pre-measurements on an unstable quantum state is
presented in this paper. The model is completely solvable and the solutions
are used to compare the time evolution of the unstable state with and without
the influence of the pre-measurement. We find that by choosing the details of
the process of pre-measurement appropriately, it is possible to observe both
suppression and enhancement of the rate of decay of the unstable state. When
the pre-measurements are assumed to lead on to actual measurements, we see
that the quantum Zeno effect, and in some instances the ‘anti-Zeno’ effect, can
be produced by repeating the measurement many times in succession. The
Zeno effect can appear in our model either as a real consequence of repeated
measurements or sometimes merely as an artefact of the manner in which
the observations on the system are performed. The anti-Zeno effect appears
almost exclusively as an artefact of the details of the measurement. Numerical
investigations are included to delineate the regimes in which the quantum Zeno
effect and possibly the anti-Zeno effect can occur.

PACS numbers: 03.65.Ta, 03.65.Xp

1. Repeated measurements and the quantum Zeno effect

The quantum Zeno effect [1] is so closely connected to quantum measurements that a complete
understanding of one is not possible without the other. Quantum measurement theory still
being a work in progress [2–5], this paper is an effort to use what we do know of the act of
measuring a quantum system to gain further insights into the Zeno effect. We construct a
model of indirect pre-measurements on an unstable quantum state which is closely related to
the Cascade model of interacting quantum systems [6] and use it to investigate the appearance
of the Zeno effect when the state is subjected to repeated observations. Within the context of
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the model we look at the possibility that non-ideal measurements can lead to the anti-Zeno or
inverse-Zeno effect [7–10]. We also discuss the question whether exploration of the quantum
Zeno and anti-Zeno effects can provide clues to a better understanding of the nature of quantum
measurements.

Continuous observation of a quantum system can, in principle, arrest its time evolution
entirely. This is the quantum Zeno effect [1]. The existence of an operator T (t) corresponding
to continuous measurement and belonging to the Hilbert space of the observed system was
shown in [1] where,

T (t) ≡ lim
N→∞

(eiHt/NE e−iHt/N )N . (1)

E is a projective measurement of the von Neumann type [11] interspersed with Hamiltonian
evolution. The convergence of the limit in the definition of T (t) and the experimental
realizability of ideal projective measurements are two issues regarding the Zeno effect that
have been discussed extensively in the literature [12–15]. Several proposals can be found
[16, 17] for replacing the idealized operator T (t) with a more ‘realistic’ one.

Treating measurements on a quantum system in a more detailed fashion than just as a
projection led to the identification of the possibility that the act of measurement can not only
suppress but in some cases apparently speed up the evolution. This is the quantum anti-
Zeno effect. Several mechanisms have been suggested that can lead to the anti-Zeno effect
[7–10] to the point that Kofman and Kurizki [9] conclude that the anti-Zeno effect is a more
natural and easily observable one in a generic quantum system which is subjected to ‘realistic’
measurements. A realistic measurement being one that occurs in a finite amount of time and
admits the possibility of being viewed as a process [18] rather than being an instantaneous,
discontinuous event such as the von Neumann projection. The problem, though, is that analytic
and numerical investigations of various scenarios involving realistic measurements lead to at
best different—but more often opposing—conclusions about the presence or absence of the
quantum Zeno and anti-Zeno effects in measured systems [19–21].

Experiments by Itano et al [22] and more recently by Wunderlich et al [23] and Fischer
et al [24] have successfully demonstrated the existence of the quantum Zeno (and anti-Zeno)
effect in atomic systems, giving experimental support to the status of T (t) as an observable.
Earlier, Valanju had shown indirect evidence for the Zeno effect in hadron–nucleus collisions
in which several interactions occur in rapid succession [25]. The experimental support for
the anti-Zeno effect in [24] depends quite strongly on the details of the system that is being
measured and the precise nature of its time evolution in the absence of the measurements.
This makes it difficult to determine the role of the measurements in producing the anti-Zeno
effect. The appearance of the anti-Zeno effect in the experiment described in [24] will be
investigated in detail in a separate paper [26].

The common theme in the measurements, ideal or not, is that the quantum system that is
observed is disturbed in some way or the other by the measurement. The measuring device is
a physical system that must be sensitive to the microscopic dynamics of the quantum system
it is observing while at the same time displaying the result of the measurement as a robust
classical signal. To incorporate these two requirements it is convenient to view the measuring
apparatus as being made up of two distinct parts. One part with a purely quantum character
that couples directly with the system being observed and another part that transforms the
signal from this coupling into a classical one. The motivation for splitting the measurement
in this manner is to see if the disturbance on the observed quantum system can be treated in a
deterministic fashion while treating the rest of the measurement in a probabilistic way.

A spectral resolution [27] of the quantum system being observed is achieved by the initial
coupling of some part of the detector to it. Following Peres [28] we call the process that
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achieves the spectral resolution a pre-measurement. This is a purely dynamical process
governed by a Hamiltonian. The initial state of the system and the apparatus may be
assumed to be a separable one: |�0〉SA = ∑

n αn|an〉S ⊗ |A0〉A where |a〉S denote states
of the system, |A〉A denote states of the apparatus and

∑
n |αn|2 = 1. The net result

of the pre-measurement is to entangle the system to the apparatus leading to a combined
state of the form |�t 〉SA = ∑

n αn|an〉S ⊗ |An〉A. Extracting a macroscopic signal that is
correlated to the state of the observed system from the entangled state |�t 〉SA completes
the measurement. This would be equivalent to picking out only one of the terms in the
expression for |�t 〉SA with probability |αn|2. The last step is a non-unitary operation
since it transforms a pure state of the system and the apparatus into a mixed state. Gaps
remain in our understanding of how it can be achieved. For a discussion of the issues
and subtleties involved, including the ‘collapse’ of the wavefunction and mechanisms
like decoherence for achieving the collapse, we refer the reader to [3] and references
therein.

This paper deals primarily with the relationship between quantum Zeno (and anti-
Zeno) effect and pre-measurement. What happens when pre-measurements lead to complete
measurements that produce classically observable signals is not discussed in detail. This
is because at some point the consequences of the non-unitary, second part of the act of
measuring a quantum system has to be inserted in an ad hoc fashion without specifying
the dynamics (if any) that is involved. The complete measurements themselves have to
be repeated with a high enough frequency in order to observe the quantum Zeno effect.
Complete measurements and their repetitions that modify the evolution of the measured
system are discussed only briefly in what follows. The focus is on how the pre-measurements
can lead to conditions suitable for observation of the quantum Zeno and possibly anti-
Zeno effects provided complete measurements are performed and repeated at appropriate
frequencies.

We restrict our attention to quantum dynamics involving decay processes through the
rest of this paper. The Zeno effect has been investigated previously by several authors in
the context of the dynamics of unstable quantum systems [29–34]. The Hilbert space of the
quantum systems we consider contains one or more unstable states which can decay into some
other states within the same space. The prototypical model of a decaying unstable quantum
state |�〉 is characterized by an exponential decrease of its survival probability:

|〈�| e−iHt |�〉|2 = P(t) � e−γ0t (2)

where γ0 is the (constant) decay rate [35]. Considerations based on model independent
assumptions such as the positivity of energy, time reversal invariance (P (t) = P(−t)) and
analyticity of the survival probability show that the purely exponential decay cannot hold
strictly at all times [36–38]. Both short and long time behaviour of the survival probability
of a generic unstable state must show deviations from the exponential decay law. The short
time behaviour, which is usually quadratic in time, is of interest to us in the context of the
quantum Zeno effect [39]. Sometimes the term ‘Zeno effect’ has been used to refer primarily
to the deviation of P(t) from purely exponential decay at short times. We note here that the
quadratic dependence of the survival probability that is crucial for obtaining the Zeno effect
is still only half the story. The other half lies in exploiting the slow initial decay by some
means to arrest the evolution of the system. Slow, non-exponential behaviour of the survival
probability at short times merely indicates the potential for observing the Zeno effect in the
system. Repeated measurements or other interactions that ‘resets’ the system periodically so
that it is never allowed to leave the non-exponential regime is what makes things interesting
and manifests itself as the Zeno effect.
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It is useful to approximate the behaviour of P(t) including the modifications at short and
long times with

P(t) � e−γ (t)t , (3)

where the effective decay constant γ (t) acquires a time dependence [10]. γ (t) is equal to the
decay constant γ0 in equation (2) except at short and very long times. In terms of the effective
decay constant γ (t) the time dependence of the survival probability of a decaying quantum
state subject to frequent measurements τ seconds apart can be expressed as

P(t) = [P(τ)]N � e−γ (τ)Nτ � e−γ (τ)t (4)

where t = Nτ is taken to be the duration of the experiment, assuming that the measurements
themselves takes only a negligible amount of time.

The repeated observations modify the effective decay constant γ0 of the freely evolving
state to a new constant value γ (τ). If τ is such that γ (τ) < γ0, we may call the resulting
evolution the quantum Zeno effect. If we can find a τ such that γ (τ) > γ0 we have the
possibility of obtaining the anti-Zeno effect. If there exists a τ ∗ such that γ (τ ∗) = γ0 then by
measuring the system at intervals of τ ∗ we can observe its natural decay as if no measurements
were performed on it. In most cases it is easy to identify an interruption time τ that leads to
the Zeno effect even though its value may be too small to be within the time resolution of a
given experiment. The condition γ (τ) > γ0 required to observe the anti-Zeno effect need not
always be satisfied for any τ as pointed out by Facchi, Nakazato and Pascazio in [10].

Following the lines of Koshino and Shimizu [40, 41] we try to make some inroads into the
problem of understanding the Zeno and anti-Zeno effects in decaying systems by considering
a process which may roughly be described as (a sequence of) ‘indirect pre-measurements’ on
the unstable quantum state. An indirect measurement being one in which the decay products
of an unstable state are detected rather than observing the decaying unstable state directly.
The model of indirect pre-measurements we present is similar to the model of ‘continuous
measurements’ used by Schulman [42] to study the Zeno effect. Our focus is on how the
pre-measurements affect the critical repetition rate τ of complete measurements that may lead
to either the Zeno or anti-Zeno effects.

The organization of this paper is as follows: section 2 introduces the model of indirect
pre-measurements and its solutions that are relevant in the current context. Section 3 considers
the evolution of the system when the pre-measurements are not present for comparison with
the case where the pre-measurements are present. The evolution of the system with the
pre-measurements is discussed in detail in section 4. In section 5 we see how repeated
measurements on the system can lead to Zeno effects and sometimes anti-Zeno effects.
Concluding remarks are given in section 6.

2. Modelling indirect pre-measurements

The model we are considering is a completely solvable field theory of five interacting fields
labelled by A,B,C,� and �. The basic commutation relations between the field operators
are

[a, a†] = [b, b†] = [c, c†] = 1

[θ(ω), θ †(ω′)] = δ(ω − ω′); [ϕ(ν), ϕ†(ν ′)] = δ(ν − ν ′)

with lowercase letters a, b, c, θ, ϕ (a†, b†, c†, θ †, ϕ†) denoting the annihilation (creation)
operators of the corresponding fields. All other commutators are identically zero. The
fields � and � are labelled by continuous parameters 0 � ω, ν � ∞ while the A,B and C
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are characterized by discrete labels. The number of interacting fields and their commutation
relations are identical to the Cascade model worked out in [6]. The model we are considering
here differs from the Cascade model only in the details of the interactions between the fields
and thereby in the processes that are allowed in the theory.

We want to construct a dynamical system using these five fields that represents both
the decay of an unstable quantum state and a (quantum) process that may be viewed as a
measurement, or at least a precursor to a measurement, being performed on the unstable state.

2.1. Indirect pre-measurements

The determination of whether an unstable state has decayed or not can be done in two ways.
Measurements may be made on the state itself to determine if it is remaining intact. This
would correspond to a direct measurement of the survival probability. The indirect method
is to introduce a detector that is sensitive only to the decay products which are produced
when the original state disintegrates. The model that we are considering is of the latter kind
where we assume that the original unstable state |A〉 = a†|0〉 is never directly observed but
the presence of the decay product |B�〉 = b†θ †(ω)|0〉 is detected by coupling it with an
excitation |C�〉 = c†ϕ†(ν)|0〉 that is assumed to be induced in (some part of) the detector.
In other words, this method is known as ‘indirect pre-measurement’ (also called continuous
measurement in [42]).

A useful analogy to visualize the processes that are happening in the model is to consider
the states |A〉 and |B〉 as the excited and ground states of an atom respectively. |�〉 can then
be thought of as a photon that is emitted when the excited state decays into the ground state.
The photon, in turn, is detected by a photodetector which emits an elementary excitation |�〉,
an electron for instance, causing the state of (some part of) the detector to become |C〉. Like
all analogies, this one should also be used with caution because our model is too simple to
accurately model all the details of a real atomic system unless a lot of restrictions are placed
on the real system.

The creation of the mode |�〉 does not constitute an ‘observation’ unless the excitation
is amplified to produce a classical signal such as the current in a photo-multiplier tube. The
problem in going through with the production of such a macroscopic signal in our treatment
is that it would imply the destruction of the state |�〉. In the context of understanding the
quantum Zeno and anti-Zeno effects, what is of interest to us is to see how the presence of the
|�〉 state in the system affects the evolution of the original unstable state |A〉. If we go through
with the whole measurement and assume that the excitation in the detector has been destroyed
as part of the detection process then this state cannot possibly affect the time evolution of
|A〉 any longer. If we assume that any realistic measurement takes a finite interval of time to
perform then we expect that excitations in the � and A fields can exist simultaneously and
interact during that finite interval. This is the reason why, as a first step, we consider only the
effect of a pre-measurement consisting of the production of |�〉 on the evolution of |A〉.

2.2. Allowed processes and the Hamiltonian

The processes that are present in our model of indirect pre-measurements are

A � B�; B�(ω) � BC�(ν). (5)

We note here that field theoretic models constructed along similar lines were considered by
Panov [43] and by Facchi and Pascazio [44] to study the quantum Zeno effect. The models
in [43, 44] differ significantly from the present one in the number of fields involved and the
interactions that are allowed.
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The Hamiltonian of the model is

H = H0 + V, (6)

H0 = mAA†A + mBB†B +
∫ ∞

0
dω ωθ †(ω)θ(ω) +

∫ ∞

0
dν νϕ†(ν)ϕ(ν), (7)

V =
∫ ∞

0
dω[f ∗(ω)A†Bθ(ω) + f (ω)B†θ †(ω)A]

+
∫ ∞

0
dω

∫ ∞

0
dν[G∗(ω, ν)θ †(ω)Cϕ(ν) + G(ω, ν)C†ϕ†(ν)θ(ω)]. (8)

In writing the Hamiltonian, the rotating wave approximation has been used and the mass of
the C quantum has been renormalized away by choosing the zero of energy appropriately.
We also assume that we are always in the rest frame of the A quantum. This is not always
a justifiable assumption unless we let these modes be ‘infinitely heavy’. Incorporating the
momenta carried by these discrete modes and including the recoil of A on emitting the �

quantum does not change the essential behaviour of the system and is therefore avoided in the
interest of clarity. To see how to include the momenta of these states, see [45].

Constants of motion other than H can be identified for the model which separates the
Hilbert space of the system into orthogonal sectors that are preserved by the Hamiltonian.
This introduces further simplifications to the problem of solving for the eigenstates of H.
These constants are

N1 = A†A +
∫ ∞

0
dω θ †(ω)θ(ω) + C†C,

N2 =
∫ ∞

0
dω θ †(ω)θ(ω) +

∫ ∞

0
dν ϕ†(ν)ϕ(ν),

N3 = A†A + B†B.

The vacuum sector (N1 = N2 = N3 = 0) has no particles in it. There is a one particle sector
(N1 = N3 = 1, N2 = 0) containing a single quantum of the B or the C field or a single stable
quantum of the A field. The sector we are interested in is the one that contains a single unstable
quantum of the A field together with a |B�〉 and a |BC�〉 (N1 = N2 = N3 = 1). The |A〉
can decay into a B and a �. The � in turn can produce a C and a �. In this sector the states
|A〉, |B�(ω)〉 and |BC�(ν)〉 are all coupled together. In the orthonormal basis furnished by
the eigenstates of H0, {|A〉, |B�(ω)〉, |BC�(ν)〉} a generic state can be denoted by the vector

� =
 〈A|�〉

〈B�|�〉
〈BC�|�〉

 =
 η

φ(ω)

ψ(ω)(ν)

 . (9)

The superscript label ω in the last component of the wavefunction is to show the dependence of
the state on the motion (if any) of the � particle from which the � quantum was created. In the
discussion that follows we will be ignoring this dependence for simplifying the calculations.
The detector is assumed to be sensitive to quanta of the � field corresponding to a range of
energies, ω1 � ω � ω2, which is controlled by the function G(ω, ν) in the Hamiltonian.

The Hamiltonian corresponding to this sector can be written in matrix form in the
eigenbasis of H0 as

H =

 mA f ∗(ω′) 0

f (ω) (mB + ω)δ(ω − ω′) G∗(ω, ν ′)

0 G(ω′, ν)δ(ω′ − ω) (mB + ν)δ(ν − ν ′)

 . (10)
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Note that some of the indices of the matrix above are continuous variables (ω and ν) and so
this form of H should be treated as a concise representation of an operator rather than as a
bona fide matrix. When the matrix acts on a column vector such as the one in equation (9)
the primed variables are to be integrated over. Phase space factors (density of states) such
as

√
ω and

√
ν that appear in the integrals and other constants are assumed to be absorbed

into the functions f (ω) and G(ω, ν) for the sake of keeping the mathematical development
transparent.

2.3. Eigenstates of the Hamiltonian

The eigenvalue problem

H�� = ��� (11)

leads to the following three coupled integral equations:

(� − mA)η� =
∫ ∞

0
dω′f ∗(ω′)φ�(ω′), (12)

(� − mB − ω)φ�(ω) = f (ω)η� +
∫ ∞

0
dν ′G∗(ω, ν ′)ψ(ω)

� (ν ′), (13)

(� − mB − ν)ψ
(ω)
� (ν) =

∫ ∞

0
dω′G(ω′, ν)δ(ω′ − ω)φ�(ω′). (14)

These three equations can be simultaneously solved in closed form. Starting from
equation (14) we can solve for ψ

(ω)
� (ν) as

ψ
(ω)
� (ν) = G(ω, ν)φ�(ω)

� − mB − ν + iε
+ eδ(� − mB − ν)δ(ν − ω). (15)

The singular contribution to ψ
(ω)
� (ν) when � = mB + ν is written down separately in the

second term in the above expression. This choice corresponds to a wavefunction with a plane
wave contribution in the |BC�〉 part. In the language of scattering theory the eigenstate of H
that we are considering is an out-state which appears at infinity as a |BC�〉. This is not the only
choice of asymptotic boundary conditions that we can make. The other choice corresponds
to having a plane wave contribution in the |B�〉 part. This possibility is considered later
on and the interpretation associated with either choice discussed. In the second term in
equation (15), the factor δ(ω − ν) comes out of the requirement of energy conservation. It
makes sure that the � quantum and the � quantum, from which the � was created, have
exactly the same energy. This must be so mainly because we chose the mass of C to be the
zero in our energy scale. The normalization constant e will turn out to be unity. Using (15) in
equation (13) we obtain

β(� + iε, ω)φ�(ω) = f (ω)η� + eG∗(ω,� − mB)δ(� − mB − ω) (16)

where

β(z, ω) = z − mB − ω −
∫ ∞

0
dν ′ |G(ω, ν ′)|2

z − mB − ν ′ (17)

is a real analytic function of z, analytic in the z-plane cut along the real axis from 0 to ∞.
Therefore,

φ�(ω) = f (ω)

β(� + iε, ω)
η� +

eG∗(ω,� − mB)

β(� + iε, ω)
δ(� − mB − ω). (18)
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Substituting this expression for φ�(ω) in (12) we can solve for η� as

η� = eG∗(� − mB,� − mB)f ∗(� − mB)

β(� + iε,� − mB)α(� + iε)
(19)

where

α(z) = z − mA −
∫ ∞

0
dω′ |f (ω′)|2

β(z, ω′)
. (20)

Finally, applying the normalization condition, one can show that e = 1 (see appendix A).
We now have one set of solutions of the model given by

�
(1)
� =


G∗(�−mB,�−mB)f ∗(�−mB)

β(�+iε,�−mB)α(�+iε)

f (ω)

β(�+iε,ω)
η� + G∗(ω,�−mB)

β(�+iε,ω)
δ(� − mB − ω)

G(ω,ν)φ�(ω)

�−mB−ν+iε + δ(� − mB − ν)δ(ν − ω)

 . (21)

The superscript in �
(1)
� indicates that there is another possible set of eigenstates to the

Hamiltonian. To obtain these solutions, instead of equation (15) we choose

ψ
(ω)
� (ν) = G(ω, ν)φ�(ω)

� − mB − ν + iε
, (22)

with no plane wave contribution in the |BC�〉 part of the wavefunction. This leads to

φ�(ω) = f (ω)

β(� + iε, ω)
η� + ẽ�δ(� − mB − K� − ω). (23)

A plane wave contribution to φ�(ω) can appear at an energy ω corresponding to the zero of
the function β(z, ω). To solve

β(z, ω) = z − mB − ω −
∫ ∞

0
dν ′ |G(ω, ν ′)|2

z − mB − ν ′ = 0

we make an approximation that the zero of β(z, ω) lies close to ω = z − mB . Using this
approximation we find that the zero is at ω = z − mB − Kz where

Kz =
∫ ∞

0
dν ′ |G(z − mB, ν ′)|2

z − mB − ν ′ . (24)

Using (23) we get

η� = ẽ�f ∗(� − mB − K�)

α(� + iε)
. (25)

The normalization is (see appendix A) ẽz = (β ′
z)

−1/2 where

β ′
z = d

dz
β(z, ω)

∣∣∣∣
ω=z−mB−Kz

.

Thus we have a second set of eigenstates of H belonging to the same sector as |�(1)〉
corresponding to out-states which asymptotically become a |B�〉 plane wave given by

�
(2)
� =


1√
β ′

�

f ∗(�−mB−K�)

α(�+iε)

f (ω)

β(�+iε,ω)
η� + 1√

β ′
�

δ(� − mB − K� − ω)

G(ω,ν)φ�(ω)

�−mB−ν+iε

 . (26)
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2.4. How to use the solutions

What is relevant about the model in our investigation of the effect of repeated indirect
measurements on an unstable quantum system are the following.

(i) The model provides explicit and exact solutions for the case in which we start with an
unstable state |A〉 which decays into the combination |B�〉. The |B�〉 state in turn leads
to the production of a new state |BC�〉. The production of the |�〉 quantum is interpreted
as a pre-measurement.

(ii) With the exact wavefunctions available for the eigenstates of H we can compute the time
evolution of the state |A〉 explicitly.

(iii) If we consider only the process A � Bθ of the model, then in the sector we are
considering, the Hamiltonian

HAB� =
(

mA f ∗(ω′)
f (ω) (mB + ω)δ(ω − ω′)

)
(27)

is identical to the V –θ sector of the Friedrichs–Lee model [46–48]. The exact solutions
of the Friedrichs–Lee model in this sector are well known and we can use these solutions
to compare the behaviour of the unstable state |A〉 in the presence and in the absence of
the ‘detecting’ excitation |�〉.

2.5. Survival probability of |A〉
We are now in a position to compute the time evolution of a single, unstable quantum of
the A field in the presence of the interactions that lead to the production of � as part of the
pre-measurement. We start by computing the survival amplitude

A(t) = 〈A| e−iHt |A〉. (28)

Inserting complete sets of eigenstates of H

A(t) = A(1)(t) + A(2)(t) (29)

where

A(1,2)(t) =
∫ ∞

0
d�

∣∣〈A ∣∣ �(1,2)
�

〉∣∣2
e−i�t . (30)

We have used the orthonormality of the eigenstates of H in equation (29) (see appendix A for
proof). Using the solutions in equations (21) and (26) we obtain

A(1)(t) =
∫ ∞

0
d� e−i�t

∣∣∣∣G∗(� − mB,� − mB)

β(� + iε,� − mB)

∣∣∣∣2

×
∣∣∣∣f ∗(� − mB)

α(� + iε)

∣∣∣∣2

(31)

and

A(2)(t) =
∫ ∞

0
d� e−i�t

∣∣∣∣∣ 1√
β ′

�

∣∣∣∣∣
2

×
∣∣∣∣f ∗(� − mB − K�)

α(� + iε)

∣∣∣∣2

. (32)

Before proceeding to investigate the behaviour of the survival probability P(t) = |A(t)|2
it is instructive to look at the evolution of the unstable state |A〉 in the absence of the coupling
with the detector modes. This will give us an indication of how the indirect pre-measurement
modifies the time evolution of |A〉 and also how to choose the nature of the detection process
in such a way that we can obtain the Zeno effect.
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3. Evolution of the unmeasured system

In the absence of the process B� � BC� the model we are considering is identical to the
V –� sector of the Friedrichs–Lee model which contains three interacting fields, V,N and �.
Relabelling the fields A,B and � for comparison with the results of the previous section and
using the Hamiltonian HABθ in (27) the eigenstates of the Friedrichs–Lee model are

ζ� =
( 〈A|ζ�〉

〈B�(ω)|ζ�〉
)

=
(

f ∗(�−mB)

γ (�+iε)

δ(� − mB − ω) + f (ω)f ∗(�−mB)

γ (�+iε)(�−mB−ω+iε)

)
(33)

where

γ (z) = z − mA −
∫ ∞

0
dω′ |f (ω′)|2

z − mB − ω′ .

The survival amplitude of the unstable state |A〉 in the Friedrichs–Lee model is

Ã(t) =
∫ ∞

0
d� e−i�t |〈A|ζ�〉|2

=
∫ ∞

0
d� e−i�t

∣∣∣∣f ∗(� − mB)

γ (� + iε)

∣∣∣∣2

. (34)

To be able to compute the survival probability, P(t) = |Ã(t)|2, of the unstable |A〉 state in the
Friedrichs–Lee model all we have to do is to choose an appropriate form factor f (ω).
The results from a particular choice of the form factor are given below for comparison with
the time evolution of the unstable state in the full model.

3.1. Numerical investigations: the unmeasured system

We choose f (ω) to have the form

f (ω) = cµ2√ω

(ω − ω0)2 + µ2
; 0 � ω � +∞. (35)

This is a Lorentzian line shape with the extra factor of
√

ω in the numerator coming from the
phase space contribution due to our choice of working with the energy variable rather than
the momentum. The constant c controls the magnitude of the interaction. All other constants,
including powers of π , are absorbed into c. The line width of the interaction is determined by
µ while ω0 determines where its peak is located.

We work with scaled units where ω,ω0 and µ really stand for multiples of a typical energy
scale ωT that is appropriate for the specific physical system that we are interested in. We refer
the reader to [34] for a concise presentation of possible realistic choices and ranges for these
variables.

For this choice of the form factor the Friedrichs–Lee model propagator γ (z) can be
computed in closed form as

γ (z) = z − mA − c2µ4
∫ ∞

0
dω′ ω′

[(ω′ − ω0)2 + µ2]2(z − ω′)

= z − mA − c2µ2(z − ω0)

2[(z − ω0)2 + µ2]

− c2µ

4

(
π + 2 tan−1

(
ω0

µ

))z(z − ω0)
(
1 + 2µ2

(z−ω0)2+µ2

)
(z − ω0)2 + µ2

− 1


− c2µ3z

4[(z − ω0)2 + µ2]2
log

[
z2

µ2 + ω2
0

]
. (36)
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Figure 1. Survival probability P̃ (t) of the unstable state in the Friedrichs–Lee model for
µ = 0.1, 0.3, 0.5, 1 and 2 with ω0 = mA = 2, c = 0.1 and ε = 0.05. The steepest curve
corresponds to µ = 2 and for lower values of µ the survival probability decays slower. The inset
shows the short time behaviour (0 � t � 5).

We use the propagator with z = � + iε to compute the survival probability, P̃ (t) = |Ã(t)|2,
for the unstable |A〉 state in the Friedrichs–Lee model for different choices of the parameters
in the form factor f (ω).

The following conventions and simplifications have been used to perform the numerical
computations to obtain P̃ (t). Since |f (ω)|2 is the discontinuity of the denominator function
across the branch cut that lies along the positive real axis, it is always true (see [48]) that

P̃ (0) = lim
ε→0

∫ ∞

0
d�

|f ∗(� − mB)|2
γ (� + iε)γ (� − iε)

= lim
ε→0

− 1

2πi

∫ ∞

0
d�

γ (� + iε) − γ (� − iε)

γ (� + iε)γ (� − iε)

= lim
ε→0

− 1

2π i

∮
C

dz
1

γ (z)
= 1. (37)

Due to the limitations of the numerical computations, P̃ (0) does not come out to be exactly
equal to 1. In such cases we re-normalize the computed survival probability to P̃ (t)/P̃ (0)

as long as P̃ (0) is not too far from being equal to 1 (at most 10%). Since equation (37) is
an exact, analytical result we are assured that P̃ (0) �= 1 in the numerical investigations is
not a consequence of real effects like wavefunction re-normalization which might have been
overlooked. We have also verified that P̃ (0) converges to unity if we increase the accuracy of
the numerical integrations. In what follows we are interested only in comparing the forms of
the graphs of various survival probabilities that we compute and so we use a uniform, modest
numerical accuracy for all the computations. To simplify matters further, in what follows, we
have chosen the mass of the B particle mB to be identically zero. In our model this means that
both B and C have the same mass. Only the mass mA of the decaying state |A〉 has a role in
determining the shape of the graph of P̃ (t).

In figure 1 we plot the survival probability as a function of time for various values of µ

keeping all the other parameters constant. The peak of the form factor coincides with the mass
of A (both are equal to 2 in arbitrary scaled units) in the plots in figure 1. The interaction is a
resonant one. Accuracy of the numerical computations performed using Mathematica limits
the value of ε to be around 0.05.

We see that as f (ω) becomes wider with increasing values of µ the decay rate ˙̃P(t)

increases. We also note that the initial quadratic regime in the decay of the survival probability
which facilitates the occurrence of the Zeno effect gets shortened as µ increases. The support
of the wavefunction of the unstable state |A〉 on the eigenstates |ζ�〉 of HAB�, given by
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the function |〈A|ζ�〉|2, increases when µ increases. The survival amplitude of |A〉 is the
Fourier transform of |〈A|ζ�〉|2. When |〈A|ζ�〉|2 becomes a wider function, the survival
amplitude becomes a narrower, steeper function. The modification of the behaviour of the
survival amplitude of |A〉, especially at short times, brought about by changing f (ω) becomes
significant when we look for the effect of the indirect pre-measurements on the decaying states.
The results presented here on the Friedrichs–Lee model are well known. We reproduce the
basic points here as a prelude to how the indirect pre-measurements can be tuned to modify
the decay rate of the observed system. The modified decay rates in turn can be used to produce
the quantum Zeno and possibly the anti-Zeno effect.

4. Zeno and anti-Zeno effects from indirect pre-measurements

Comparison of equations (29), (31) and (32) with equation (34) shows that the behaviour of
the survival amplitude of the unstable state |A〉 is modified in three qualitatively different ways
when the indirect pre-measurements are introduced into the system.

(i) The most obvious difference is that when the pre-measurements are present, |A〉 can
decay through two distinct channels with amplitudes given by A(1)(t) and A(2)(t). In
the Friedrichs–Lee model there is only one available channel with amplitude Ã(t). Only
one of the channels in the evolution with the pre-measurements leads to the production
of a detector excitation |�〉 asymptotically. This presents us with the question of how to
interpret the presence of the two channels in relation to what is being measured of the
decaying state. A discussion of this issue is included in section 4.1.

(ii) The denominator function (propagator) γ (z) corresponding to the process A � B� in
the unmeasured case is modified to α(z) when the pre-measurements are introduced. If
the function K(z) defined in equation (24) is small so that β(z, ω) ∼ z − mB − ω then
α(z) is approximately the same as γ (z). In our numerical investigations we choose the
parameters and form factors such that α(z) ∼ γ (z) so that we can isolate the effect of
changing the shape and position of G(ω, ν) on the behaviour of the pre-measured system
while ignoring the influence of changes to the denominator function.

(iii) With the assumption that the modifications to the denominator function are minimal we
see that the integrands in (31) and (32) contain a factor |f ∗/α|2 that is identical to the
factor |〈A|ζ�〉|2 that appears in (34). We can therefore view the amplitudes A(1)(t) and
A(2)(t) as Fourier transforms of the overlap |〈A|ζ�〉|2 of the unmeasured case modified
by the multiplicative factors h(1)(�) and h(2)(�), respectively, where

h(1)(�) =
∣∣∣∣G∗(� − mB,� − mB)

β(� + iε,� − mB)

∣∣∣∣2

(38)

and

h(2)(�) =
∣∣∣∣∣ 1√

β ′
�

∣∣∣∣∣
2

. (39)

The function h(1)(�) depends explicitly on G(ω, ν) that controls the ‘detecting’ process
B� � BC�. By changing the nature of the detector we are therefore able to change the
manner in which |A〉 decays. The modifying function for the second channel, h(2)(�), also
has an implicit dependence on G(ω, ν) through β ′ although this dependence is very weak
and not easy to exploit. Before we can figure out how to choose G(ω, ν) so as to generate
suppression or enhancement of the decay rate of the pre-measured system in relation to the
unmeasured case we need to understand how to interpret the two channels through which the
decay of the pre-measured system can occur.
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4.1. A note on interpretation

Only the decay of |A〉 through the first channel with amplitude A(1)(t) asymptotically leads to
the production of a |�〉 quantum. Since it is the excitation of the � field that is transformed
into a classical signal during the non-unitary part of the measurement process we assume
that only the decay through this channel is ever detected. If the initial state decays through
the second channel, there still is an excitation of the � field with an amplitude given by the
ψ

(ω)
� (ν) component of �

(2)
� . Since ψ

(ω)
� (ν) in the case of the second channel is not a singular

function in energy and momentum space, we assume that this excitation exists only for a finite
time with a finite extent in configuration space and dies away without propagating to infinity.
A detector with a sufficiently fast response time located close to the decaying A particle can in
principle catch this signal and produce a macroscopic effect out of it. We assume that this is
not the case here. The part of the detector that is responsible for extracting a classical signal
out of the excitation of the � field that is created by the decay products of |A〉 is sensitive only
to states of the type �

(1)
� which asymptotically become |BC�〉 states.

With this picture in mind we interpret P (1)(t) = |A(1)(t)|2 as the probability that the
detector ‘clicks’ when |A〉 decays. P (2)(t) = |A(2)(t)|2 is the probability that the detector fails
to notice given that |A〉 has indeed decayed. The actual survival probability of the state |A〉 in
the dynamical system that includes the pre-measurement is P(t) = |A(1)(t) + A(2)(t)|2. Note
that P(t) �= P (1)(t) + P (2)(t).

According to our choice of the function G(ω, ν) we can make the decay through one of the
channels a substantially dominant process thereby making P(t) ∼ P (1)(t) or P(t) ∼ P (2)(t)

as the case may be. The former case is when the pre-measurement has a significant effect on
the decay of |A〉 and the latter is when the detector is, for most practical purposes, decoupled
from the quantum system. A third and interesting possibility is when the two amplitudes
A(1)(t) and A(2)(t) are comparable and can interfere with each other making P(t) different
from both P (1)(t) and P (2)(t).

An important question as far as interpretation of the numerical results is the meaning of
the ‘probability of detection’ P (1)(t) when it is small compared to P (2)(t) (or vice versa). If
one were to plot both P (1)(t) and P (2)(t) on the same graph, P (1)(t) might start at a much
lower point than P (2)(t) if P (1)(0)  P (2)(0). On the other hand, probabilities themselves
are physically measurable only when viewed as frequencies and so it makes more sense to
compare P (1)(t)/P (1)(0) and P (2)(t)/P (2)(0) with P(0) = P (1)(0) + P (2)(0) = 1. This could
be viewed as a comparison of the decay rates through the two different channels rather than
as a comparison of the raw survival probabilities. The graph of P (1)(t)/P (1)(0) would then
correspond to the decay curve that an experimenter would draw from detector count data under
the assumption that initially the sample consisted entirely of non-decayed |A〉 states and also
that the detector is one hundred per cent efficient.

4.2. Numerical investigations: the pre-measured system

The first step is to choose an appropriate detector function G(ω, ν) that controls the pre-
measurement interaction B� � BC�. Since we are primarily interested in investigating the
effects of the height, width and location of G(ω, ν) on the decay of |A〉 we choose G to be a
square step given by

G(ω, ν) =
{

δ a � ω, ν � b

0 otherwise
0 � ω, ν � ∞ (40)

where δ is the height of the step and L ≡ b − a is its width. The location of the step is
controlled by changing a and b. This is not a very realistic detector function but we use it in
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Figure 2. Sampling the decay with a narrow measurement window in frequency space
(L = 0.1 < µ = 0.5): the form factors f (ω) and G(ω, ν) are shown in insets. The dashed
line is P (1)(t) which is the ‘observed’ decay. The dotted line is P (2)(t), the part of the decay
amplitude that is not detected. The thin line is P̃ (t) while the thick solid line is the real decay of
the system, P(t). The centres of the detector function are at 1, 1.9, 2 and 2.1 in (a), (b), (c) and
(d) respectively. If the centre of the detector function is located at higher values of �, the plots
obtained are similar to (a).

the interest of significantly simplifying the numerical calculations without compromising on
the qualitative features of the dynamics.

Using this G(ω, ν) we can now compute the actual survival probability, P(t) of |A〉,
the ‘measured’ survival probability P (1)(t)/P (1)(0) and the component P (2)(t)/P (2)(0) that
the detector fails to see. All three can be compared with survival probability P̃ (t) = |Ã(t)|2
of the same system that is not subject to the pre-measurement process. In the following
discussion we denote P (1)(t)/P (1)(0) just as P (1)(t) and P (2)(t)/P (2)(0) as P (2)(t). In all
the computations we keep the form factor f (ω) the same with parameter values µ = 0.5 and
ω0 = mA = 2. In this paper we also keep the height of G(ω, ν) a constant and we choose it
to be the same as the peak height of f (ω). Here we focus only on the effect of the width and
the location of G(ω, ν) has on the way the unstable state |A〉 decays.

4.2.1. A narrow detector function. The width of the modifying function h(1)(�) in the
integral that defines A(1)(t) is equal to the width of G(�,�). From our analysis of the
unmeasured system we recognize that if

∣∣〈A ∣∣�(1,2)
�

〉∣∣2
has a very narrow support in the energy

domain then the corresponding decay of |A〉 through that channel will be very slow. To take
advantage of this observation we make the width L of the detector function much smaller than
that of f (ω). If we can now make the decay into the first channel the dominant process as
well we will be able to significantly suppress the rate of decay of |A〉 just by virtue of the
pre-measurements being present. We look only at the effect of the location of the centre of
G(ω, ν) on the three probabilities P (1)(t), P (2)(t) and P(t) that are of interest to us. The
result is summarized in figure 2.
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Figure 3. Sampling the decay with a wide measurement window in frequency space (L = 1 >

µ = 0.5): the form factors f (ω) and G(ω, ν) are shown in insets. The dashed line is P (1)(t)

which is the ‘observed’ decay. The dotted line is P (2)(t), the part of the decay amplitude that is
not detected. The thin line is P̃ (t) and the thick solid line is the real decay of the system, P(t).
The centres of the detector function are at 0.5, 1, 2 and 3 in (a), (b), (c) and (d) respectively. If the
centres are at larger values of �, the plots obtained are similar to (a).

From figure 2 we can come to the following conclusions: if the detector is sampled using
a very narrow window in frequency space, the observed decay rate Ṗ (1)(t) will always be
suppressed relative to both the real decay rate Ṗ (t) and the decay rate ˙̃P(t) of the unmeasured
system. If the measurement is made at frequencies that are far away from the peak of the line
shape f (ω) of the decay process, then the observed rate will not have much connection with
what is actually happening. This is illustrated in figure 2(a). The dominant process in this
instance is the decay through the second channel which proceeds without being detected; this
is clearly not a good way of setting up our detector. If we do set up the detector to observe
the decay at energies near the peak of f (ω), we see that the dominant process decays through
the observed channel. So the graph of P(t) is very close to that of P (1)(t) and there is a real
suppression of the decay rate due to the presence of the pre-measurement see figures 2(b), (c)
and (d). In other words, there is a real modification of the effective decay rate γ (t) of the
pre-measured system with respect to γ0 of the unmeasured system. This makes it easier to
find a τ such that γ (τ) < γ0 thereby facilitating the observation of the Zeno effect.

4.2.2. A wide detector function. Taking our cue from the fact that a narrow detector function
can generate a real suppression of the decay rate of |A〉 one is tempted to think that if G(ω, ν)

is chosen to be wider than f (ω) it might lead to an enhancement in the decay rate which can
then be exploited to obtain the anti-Zeno effect. The results of sampling the decay process
with a wide detector function is given in figure 3. The observed decay rate Ṗ (1)(t) is enhanced
in comparison to the decay rate of the unmeasured system only when the detector function
is located far from the peak of the form factor f (ω). When we place the centre of the wide



11300 A Shaji

0.5 1 1.5 2 2.5 3 3.5 4
centre

2

4

6

8

10

12

14

|A(1)/A(2)|

Figure 4. The relative importance of the measured and unmeasured amplitudes at time t = 0 as a
function as the location of the centre of the detector function G. The sharp curve corresponds to
the narrow detector function while the broad curve is for the wide detector function. The straight
line is |A(1)(t)/A(2)(t)| = 1.

detector function in coincidence with the peak of the form factor both the observed and real
decay become very similar to the behaviour of the unmeasured system as seen figure 3(c).
Making the detector function wide does not change the effective decay rate γ (t) of the pre-
measured system. Only the observed part of the decay is modified. This means that the
anti-Zeno effect, unlike the Zeno effect, cannot be obtained just by modulating the detector
function. An apparent anti-Zeno effect can however be obtained. This possibility is discussed
in section 6.

To check the consistency of the numerical calculations we computed the survival
probabilities when G(ω, ν) is very wide compared to f (ω) and captures the signals in all
frequencies that are produced when |A〉 decays. We see that the observed, the actual and
the unmeasured decay curves fall one on top of the other. Using a detector with such a
wide frequency response we are therefore able to measure the actual evolution of the survival
probability of |A〉 without having to worry about the pre-measurement modifying the dynamics
in any significant manner.

4.3. Interference when the two amplitudes A(1)(t) and A(2)(t) are comparable

A third interesting possibility that we mentioned before is when A(1)(t) and A(2)(t) are
comparable in magnitude and can interfere with each other making P(t) quite different from
both P (1)(t) and P (2)(t). The ratio of the two amplitudes at time t = 0 is plotted as a function
of the location of the centre of the detector function in figure 4. The figure explains why
the observed decay curve is almost the same as the real decay curve when the centre of the
detector function coincides with the peak of f (ω). It also shows why a real enhancement of
the decay rate is not possible when the detector function is wide compared to f (ω) and placed
at the peak of f (ω) because when G(ω, ν) is wide, A(1)(t) never becomes overwhelmingly
bigger in magnitude than A(2)(t). This is not the case when the detector function is very
narrow compared to f (ω). When it is narrow, placing its centre in coincidence with the peak
of the line shape makes the slower decay through the detected channel the dominant process
and therefore we are able to make the decay rate as small as we want just by using our control
over G(ω, ν).

From figure 4 we see that when the centre of the wide detector function is at 1.4 or 2.6 (in
the arbitrary energy scale) or when the centre of the narrow detector function is at 1.8 or 2.2
the two amplitudes A(1)(t) and A(2)(t) are comparable. We expect them to interfere at these
parameter ranges. This is seen in the plots of P (1)(t), P (2)(t) and P(t) given in figures 5 and 6.
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Figure 5. The two graphs on the right-hand side show P (1)(t) (dashed line), P (2)(t) (dotted
line), P̃ (t) (thin line) and P(t) (thick solid line) when the measurement window is narrow
(L = 0.1) and when centre of G(λ, λ) is located at 1.8 and 2.2 in (a) and (b) respectively
such that |A(1)(0)/A(2)(0)| � 1. The form factors f and G are shown in insets.
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Figure 6. The two graphs on the right-hand side show P (1)(t) (dashed line), P (2)(t) (dotted line),
P̃ (t) (thin line) and P(t) (thick solid line) when the measurement window is wide (L = 1) and when
centre of G(λ, λ) is located at 1.4 and 2.6 in (a) and (b) respectively such that |A(1)(0)/A(2)(0)| � 1.
The form factors f and G are shown in insets.

What is missing from the numerical investigations of the system with pre-measurements
is the effect of the strength of the system–detector coupling δ on the dynamics. We plan to
investigate this in a separate paper.

5. Repeated measurements

The model we have constructed deals entirely with the effects of a pre-measurement on
the unstable state |A〉. So far we have not considered the effects of continuing with the
measurement process to obtain a classical signal from the detector that indicates the decay of
|A〉. The measurement process will most likely involve the destruction of the |�〉 state that is
produced in the pre-measurement leading to an amplified signal. We approximate this process
by arbitrarily setting the last two components φ�(ω) and ψ

(ω)
� (ν) of the time evolved state

|A(t)〉 =
∫ ∞

0
d� e−i�t

[〈
�

(1)
�

∣∣A〉∣∣�(1)
�

〉
+

〈
�

(2)
�

∣∣A〉∣∣�(2)
�

〉]
to be zero to simulate the effect of a full measurement on the system. The state which starts
out as |A〉 = (1, 0, 0)T , after a full measurement at t = τ becomes

|A〉τ =
P (1)(τ )

0
0

 ; P (1)(τ ) =
∫ τ

0
d� e−i�t

∣∣〈A∣∣�(1)
�

〉∣∣2
.
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Figure 7. The behaviour of the survival probability with repeated measurements. The dashed line
is the free evolution of the unmeasured system. The thick line in the middle is for the unmeasured
system interrupted at intervals τ = 3. The top curve is the measured survival probability P (1)(t)

when pre-measurements with a narrow detection window (L = 0.1) is present. The lower curve
is again the measured survival probability P (1)(t) when pre-measurement is done with a wide
window (L = 1) with the peak of the detector function far away from the peak of f (ω).

P (1)(τ ), and not P(τ), appears in the expression for |A〉τ because for the measurement to
have happened we have to assume that the decay has occurred through the first channel and
not the second one. To model repeated measurements we start the next time from |A〉τ
instead of (1, 0, 0)T and let it evolve again for τ units of time and so on. This gives us
only the time evolution of the ‘observed part’ of the decay process under the influence of
repeated measurements. We have seen earlier, though, that by choosing the detector function
appropriately we can make the real behaviour of the decay curve come as close as we want to
the behaviour of the observed part in some cases.

If P(τ) ∼ P (1)(τ ) < P̃ (τ ) then [P (1)(τ )]n < P̃ (t = nτ) leading to a suppression of the
decay rate of the repeatedly measured system compared to the decay rate of the unmeasured
one (the Zeno effect). Moreover, we see that [P (1)(τ )]n < [P̃ (τ )]n indicating that not only is
the Zeno effect possible, but also that the pre-measurements can be tuned to make it easier to
see the Zeno effect. If, on the other hand P (1)(τ ) > P̃ (τ ) (a wide detector function placed
away from the peak of F(ω)) we can obtain the anti-Zeno effect. We cannot call this a real
anti-Zeno effect that genuinely speeds up the decay of |A〉 because even if P (1)(τ ) > P̃ (τ )

for certain choices of the parameters, for these values the real evolution P(τ) is close to the
unmeasured evolution P̃ (τ ) rather than being close to what is ‘detected’.

Interrupted evolution of |A〉 with and without pre-measurements is shown in figure 7. The
unmeasured system is interrupted periodically after free evolution for τ = 3 units. This is just
before the survival probability curve becomes exponential. It is understood that to produce
Zeno effect in a system without pre-measurements, it has to be interrupted at time intervals
shorter than or equal to τ = 3. When the pre-measurements are present we see that for the
same interruption time, either a more pronounced Zeno effect or an apparent anti-Zeno effect
is seen in the observed survival probability curve.

6. Conclusions

We have studied a model of indirect pre-measurements on an unstable quantum state |A〉. We
see that the way the pre-measurements are performed can have an effect on the dynamics of
the decaying state. If we have a detector that samples a narrow window in energy space for the
decay products of |A〉 as in figure 2 then the presence of the detector can lead to a suppression
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of the real decay rate of the state. This is a fascinating result because the detector does not
actively measure the decaying state but rather waits to detect the products of the decay. The
main difficulty in obtaining the Zeno effect is very often the lack of sufficient time resolution
for the detector. The decaying state has to be locked into the initial non-exponential regime
of its decay curve by interrupting it sufficiently frequently. Let us assume for a moment that
the detectors that we have do not have sufficient temporal resolution to interrupt the evolution
of the state |A〉 at sufficiently small time intervals when it is evolving freely. The observed
decay curves P (1)(t) in figure 2 are quadratic for a longer time when the pre-measurements are
performed on the state with a narrow detector window. This makes it easier to obtain the Zeno
effect by repeating complete measurements when the pre-measurements modify the evolution
of |A〉.

One has to be careful because we have the possibility of obtaining an apparent Zeno effect
in addition to a real one. If one were to couple the decay products of |A〉 with the quantum part
of the detector using a narrow energy window at energies far away from the peak of f (ω), then
the observed suppression of the decay rate of |A〉 would merely be an illusory effect generated
by the measurement process. In this case a lot of decay events would go undetected if we had
started off with an ensemble of identical |A〉 states. We will then end up with an apparent
suppression of the decay rate since only P (1)(t) is measured. The Zeno effect obtained by
repeating the non-exponential part of the observed decay curve P (1)(t) has no connection with
the real dynamics of the state in this case. If, on the other hand, we couple the system with
the detector strongly by making the peak of the narrow detector function coincide with the
peak of the resonance curve of the decay, we will be able to genuinely suppress the real decay
rate of the measured system. By interrupting this modified decay process periodically through
the completion of the measurement one can further enhance the suppression of the decay and
get a true, full-fledged quantum Zeno effect. In other words what is important is that when
the detector is sensitive to that narrow window in energy space to which it really should be
sensitive to in order to be a ‘good’ detector, then the suppression of decay rate of |A〉 is a real
effect.

The anti-Zeno effect also appears in our model but only as an apparent effect. From
figure 3 we conclude that it is not possible to obtain a real anti-Zeno effect by just increasing
the width of the detector function. An apparent anti-Zeno effect is possible though. If
G(ω, ν) is chosen so as to measure the system at energies away from the peak of f (ω), the
observed decay curve P (1)(t) shows an enhancement of the decay rate compared to both the
unmeasured evolution P̃ (t) and also the real evolution P(t) of system. Repeated application
of such measurements will appear to speed up the decay as seen in figure 7. This apparent Zeno
effect is in agreement with what is observed by Kofman and Kurizki in [9]. The anti-Zeno
effect does appear in their analysis under similar conditions. The conclusion in [9] is that
since a measurement of this sort is much easier to perform than the kind that leads to the Zeno
effect, the anti-Zeno effect must be the more readily observable of the two. We point out
that with our model also it is easier to obtain the anti-Zeno effect out of the enhancement of
decay when a wide detector function is used. Our model suggests that the ‘easily observable’
anti-Zeno effect appears as an artefact of the way we perform the measurement and not as a
real effect. When we do bring the wide detector function close to the peak of f (ω) with the
hope of seeing a real speed-up of the decay, what happens instead is that P (1)(t) approaches
both P(t) and P̃ (t) rather than P(t) approaching P (1)(t). So in our model the anti-Zeno effect
remains just a product of the way the detector is set up with no relation to the actual dynamics
of the system under consideration.

There seems to be an enhancement of the real decay rate Ṗ (t) in both figures 5 and
6 but this enhancement is clearly not detectable using our detector since P (1)(t) remains
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unchanged. We cannot get the anti-Zeno effect by measuring the system in the manner shown in
figures 5 and 6. Moreover, the parameter ranges over which this effect can be created is very
small and a generic detector is very unlikely to affect the system it is measuring in this
particular manner.

The suppression of the decay rate of the unstable state due to the pre-measurements is an
interesting phenomenon because a common roadblock in observing the Zeno effect is that the
quantum system has to be observed at a frequency higher than that allowed by most detectors.
Here we see that in the case of a pre-measured decaying state, the part of the detector that is
responsible for interacting with the system can itself be chosen so that it suppresses the natural
decay of the state being observed. This would mean that the process of measurement which
starts with the pre-measurements and progresses through non-unitary and ill-understood stages
need not happen quite as fast in order to prevent the unstable state from decaying.

To complete our understanding of the quantum Zeno and anti-Zeno effects, a better
understanding of the entire sequence of events that is involved in the act of measuring a
quantum system is needed. Using our model we can pose the question whether the act of
measurement can indeed be split into a pre-measurement part where there is a direct interaction
between the system that is being observed and some part of the detector, entangling the two
and a second part where this entanglement is transformed into a classically observable signal.
The model suggests that the final outcomes of the measurement depends on the specific way
the pre-measurement occurs. One of the potentially observable consequences of the pre-
measurement is that under suitable conditions the ‘Zeno time’ can be made much larger than
what one would expect of the system when it is evolving without interacting with the detector.
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Appendix. Orthonormality of the eigenstates of H

For equation (29) to be valid we have to show that the eigenstates of H are orthonormal, i.e.(
�(1,2)

µ ,�
(1,2)
λ

) = η∗
µηλ +

∫ ∞

0
dω′φ∗

µ(ω′)φλ(ω
′) +

∫ ∞

0
dω′

∫ ∞

0
dν ′ψ(ω′)∗

µ (ν ′)ψ(ω′)
λ (ν ′)

= δ(λ − µ) (A.1)

A.1. Orthonormality of the first set of eigenstates �
(1)
�

We start from the last term of
(
�(1)

µ ,�
(1)
λ

)
,

I3 =
∫ ∞

0
dω′

∫ ∞

0
dν ′ψ(ω′)∗

µ (ν ′)ψ(ω′)
λ (ν ′)

=
∫ ∞

0
dω′

∫ ∞

0
dν ′

[
eδ(µ − mB − ν ′)δ(ω′ − ν ′) +

G∗(ω′, ν ′)φ∗
µ(ω′)

µ − mB − ν ′ − iε

]
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×
[
eδ(λ − mB − ν ′)δ(ω′ − ν ′) +

G(ω′, ν ′)φλ(ω
′)

λ − mB − ν ′ + iε

]
= e2δ(λ − µ) +

eG(µ − mB,µ − mB)

λ − µ + iε
φλ(µ − mB)

− eG∗(λ − mB, λ − mB)

λ − µ − iε
φ∗

µ(λ − mB) +
∫ ∞

0
dω′ φ

∗
µ(ω′)φλ(ω

′)
λ − µ + 2iε

×
[∫ ∞

0
dν ′

( |G(ω′, ν ′)|2
µ − mB − ν ′ − iε

− |G(ω′, ν ′)|2
λ − mB − ν ′ + iε

)]
. (A.2)

The last term in (A.2) can be simplified using∫ ∞

0
dω′ |G(ω′, ν ′)|2

λ − mB − ν ′ + iε
= λ − mB − ω′ − β(λ, ω′)

to read

−
∫ ∞

0
dω′φ∗

µ(ω′)φλ(ω
′) +

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]φ∗

µ(ω′)φλ(ω
′).

(A.3)

The first term in the above expression cancels the second term in (A.1) and we obtain(
�(1)

µ ,�
(1)
λ

) = e2δ(λ − µ) + η∗
µηλ +

eG(µ − mB,µ − mB)

λ − µ + iε

[
f (µ − mB)

β(λ, µ − mB)
ηλ

+
eG∗(µ − mB, λ − mB)

β(λ, µ − mB)
δ(λ − µ)

]
− eG∗(λ − mB, λ − mB)

λ − µ − iε

×
[

f ∗(λ − mB)

β∗(µ, λ − mB)
η∗

µ +
eG(λ − mB,µ − mB)

β∗(µ, λ − mB)
δ(λ − µ)

]
+

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]φ∗

µ(ω′)φλ(ω
′). (A.4)

The two terms with δ(λ − µ) in the above expression cancel each other thereby simplifying
the expression to(
�(1)

µ ,�
(1)
λ

) = e2δ(λ − µ) + η∗
µηλ − e

λ − µ + iε

[
G∗(λ − mB, λ − mB)f ∗(λ − mB)

β∗(µ, λ − mB)
η∗

µ

− G(µ − mB,µ − mB)f (µ − mB)

β(λ, µ − mB)
ηλ

]
+

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]φ∗

µ(ω′)φλ(ω
′). (A.5)

The last term in (A.5) can be expanded as follows:

1

λ − µ + 2iε

∫
dω′[β(λ, ω′) − β∗(µ, ω′)]

[
f (ω′)

β(λ, ω′)
ηλ +

eG∗(ω′, λ − mB)

β(λ, ω′)
δ(λ − mB − ω′)

]
×

[
f ∗(ω′)

β∗(µ, ω′)
η∗

µ +
eG(ω′, µ − mB)

β∗(µ, ω′)
δ(µ − mB − ω′)

]

= η∗
µηλ

λ − µ + 2iε

∫ ∞

0
dω′

[ |f (ω′)|2
β∗(µ, ω′)

− |f (ω′)|2
β(λ, ω′)

]
+

α∗(µ) − α(λ)

λ − µ + 2iε
η∗

µηλ

+
e

λ − µ + 2iε

[
G∗(λ − mB, λ − mB)f ∗(λ − mB)

β∗(µ, λ − mB)
η∗

µ
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− G(µ − mB,µ − mB)f (µ − mB)

β(λ, µ − mB)
ηλ

]
+

e2δ(λ − µ)

λ − µ + 2iε

[
G∗(λ − mB, λ − mB)f ∗(λ − mB)

β∗(µ, λ − mB)

− G(µ − mB,µ − mB)f (µ − mB)

β(λ, µ − mB)

]
(A.6)

where we have used

α(λ)ηλ = G∗(λ − mB, λ − mB)f ∗(λ − mB)

β∗(µ, λ − mB)
,

α∗(µ)η∗
µ = G(µ − mB,µ − mB)f (µ − mB)

β(λ, µ − mB)
.

The last term in (A.6) is zero while
η∗

µηλ

λ − µ + 2iε

∫ ∞

0
dω′

[ |f (ω′)|2
β∗(µ, ω′)

− |f (ω′)|2
β(λ, ω′)

]
= −η∗

µηλ − α∗(µ) − α(λ)

λ − µ + 2iε
η∗

µηλ

using∫ ∞

0
dω′ |f (ω′)|2

β∗(µ, ω′)
= µ − mA − α∗(µ);

∫ ∞

0
dω′ |f (ω′)|2

β(λ, ω′)
= λ − mA − α(λ).

So putting all the terms together we obtain(
�(1)

µ ,�
(1)
λ

) = e2δ(λ − µ)

which also implies that e = ±1 (we choose e = +1).

A.2. Orthonormality of the second set of eigenstates �
(2)
�

The last term of
(
�(2)

µ ,�
(2)
λ

)
is

I3 =
∫ ∞

0
dω′

∫ ∞

0
dν ′ψ(ω′)∗

µ (ν ′)ψ(ω′)
λ (ν ′)

=
∫ ∞

0
dω′ φ

∗
µ(ω′)φλ(ω

′)
λ − µ + 2iε

[∫ ∞

0
dν ′

( |G(ω′, ν ′)|2
µ − mB − ν ′ − iε

− |G(ω′, ν ′)|2
λ − mB − ν ′ + iε

)]
= −

∫ ∞

0
dω′φ∗

µ(ω′)φλ(ω
′) +

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]φ∗

µ(ω′)φλ(ω
′)

using equation (A.3). We now obtain(
�(2)

µ ,�
(2)
λ

) = η∗
µηλ +

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]φ∗

µ(ω′)φλ(ω
′). (A.7)

The explicit solution of the model in equation (23) can be used to write the second term in the
above expression as

1

λ − µ + 2iε

∫ ∞

0
dω′[β(λ, ω′) − β∗(µ, ω′)]

[
f (ω′)

β(�,ω′)
η� + ẽ�δ(� − mB − K� − ω′)

]
×

[
f ∗(ω′)

β∗(µ, ω′)
η∗

µ + ẽµδ(µ − mB − Kµ − ω′)
]

= ẽ2 β(λ, µ − mB − Kµ) − β∗(µ,µ − mB − Kµ)

λ − µ + 2iε
δ(λ − µ)

+
η∗

µηλ

λ − µ + 2iε

∫ ∞

0
dω′

[ |f (ω′)|2
β∗(µ, ω′)

− |f (ω′)|2
β(λ, ω′)

]
+

α∗(µ) − α(λ)

λ − µ + 2iε
η∗

µηλ.
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The last two terms in the above expression can be reduced to −η∗
µηλ, which cancels the first

term in (A.7) and we are left with(
�(2)

µ ,�
(2)
λ

) = ẽ2δ(λ − µ)β ′
λ

where

β ′
λ = d

dλ
β(λ, ω)

∣∣∣∣
ω=λ−mB−Kλ

= lim
ε→0

lim
λ→µ

β(λ + iε, λ − mB − Kλ) − β(µ − iε, µ − mB − Kµ)

λ − µ + 2iε
. (A.8)

We have used β∗(λ + iε, ω) = β(λ − iε, ω) in the above expression. For orthonormality we
see that ẽ = (β ′

λ)
−1/2.

We leave it to the reader to verify that
(
�

(1)
λ , �(2)

µ

) = 0, completing the demonstration of
the orthonormality of the eigenstates of the Hamiltonian of our model. The same techniques
used here can be employed to show the completeness of the eigenstates of H that we obtained.
Since this is a lengthy and detailed calculation that closely follows the proof of completeness
of the eigenstates of the Cascade model, we refer the reader to the extensive discussion in [6]
to see how to proceed with the calculation.
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